Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123847, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552771

RESUMO

Copper pollution has become global environmental concern. Widespread Cu pollution results in excessive Cu exposure in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a newly reported Cu-dependent and programmed cell death formTsvetkov et al., 2022. However, whether copper exposure at real environmental exposure dose might cause placental cuproptosis and induce miscarriage was completely unexplored. In this study, we found that Cu exposure during pregnancy induced miscarriage or complete pregnancy loss by inducing placenta cuproptosis in CuCl2-exposed pregnant mice. Notably, Cu exposure at 1.3 mg/kg/d (a real environmental exposure dose) was enough to cause placenta cuproptosis. CuCl2 exposure disrupts the TCA cycle, causes proteotoxic stress, increases Cu2+ ion import/decreases Cu2+ export, and results in the loss of Fe-S cluster proteins in mouse placenta, which induces placenta cuproptosis. Moreover, we also identified that Cu exposure down-regulates the expression levels of mmu-miR-3473b, which interacts with Dlst or Rtel1 mRNA and simultaneously positively regulates Dlst or Rtel1 expression, thereby disrupting the TCA cycle and resulting in the loss of Fe-S cluster proteins, and thus epigenetically regulates placental cuproptosis. Treatment with TTM (a cuproptosis inhibitor) suppressed placental cuproptosis and alleviated miscarriage in CuCl2-exposed mice. This work provides novel reproductive toxicity of Cu exposure in miscarriage or complete pregnancy loss by causing placental cuproptosis. This study also provides new ways for further studies on other toxicological effects of Cu and proposes a new approach for protection against Cu-induced reproductive diseases.


Assuntos
Aborto Espontâneo , Gravidez , Humanos , Feminino , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Cobre/toxicidade , Placenta , Exposição Ambiental , Poluição Ambiental , Apoptose
2.
Part Fibre Toxicol ; 21(1): 13, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454452

RESUMO

BACKGROUND: With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS: In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS: Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.


Assuntos
Aborto Espontâneo , Nanopartículas , Gravidez , Feminino , Humanos , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Poliestirenos/toxicidade , Caspase 3 , Microplásticos , Plásticos , Caspase 2 , Placenta , Apoptose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2 , Nanopartículas/toxicidade
3.
Adv Sci (Weinh) ; 11(13): e2207435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286681

RESUMO

Human trophoblast cells are crucial for healthy pregnancy. However, whether the defective homologous recombination (HR) repair of dsDNA break (DSB) in trophoblast cells may induce miscarriage is completely unknown. Moreover, the abundance of BRCA1 (a crucial protein for HR repair), its recruitment to DSB foci, and its epigenetic regulatory mechanisms, are also fully unexplored. In this work, it is identified that a novel lnc-HZ10, which is highly experssed in villous tissues of recurrent miscarriage (RM) vs their healthy control group, suppresses HR repair of DSB in trophoblast cell. Lnc-HZ10 and AhR (aryl hydrocarbon receptor) form a positive feedback loop. AhR acts as a transcription factor to promote lnc-HZ10 transcription. Meanwhile, lnc-HZ10 also increases AhR levels by suppressing its CUL4B-mediated ubiquitination degradation. Subsequently, AhR suppresses BRCA1 transcription; and lnc-HZ10 (mainly 1-447 nt) interacts with γ-H2AX; and thus, impairs its interactions with BRCA1. BPDE exposure may trigger this loop to suppress HR repair in trophoblast cells, possibly inducing miscarriage. Knockdown of murine Ahr efficiently recovers HR repair in placental tissues and alleviates miscarriage in a mouse miscarriage model. Therefore, it is suggested that AhR/lnc-HZ10/BRCA1 axis may be a promising target for alleviation of unexplained miscarriage.


Assuntos
Aborto Espontâneo , Reparo de DNA por Recombinação , Humanos , Feminino , Camundongos , Gravidez , Animais , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Aborto Espontâneo/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Proteínas Culina/genética
4.
J Hazard Mater ; 466: 133035, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266585

RESUMO

Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERß) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERß in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.


Assuntos
Água Potável , Disruptores Endócrinos , Gravidez , Feminino , Masculino , Animais , Camundongos , Água Potável/química , Desinfecção , Ácido Dicloroacético/análise , Ácido Tricloroacético/toxicidade , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio , Receptor beta de Estrogênio
5.
ACS Nano ; 18(4): 3733-3751, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252510

RESUMO

Nanoplastics (NPs), as emerging pollutants, have attracted global attention. Nevertheless, the adverse effects of NPs on female reproductive health, especially unexplained miscarriage, are poorly understood. Defects of trophoblast cell migration and invasion are associated with miscarriage. Migrasomes were identified as cellular organelles with largely unidentified functions. Whether NPs might affect migration, invasion, and migrasome formation and induce miscarriage has been completely unexplored. In this study, we selected polystyrene nanoplastics (PS-NPs, 50 nm) as a model of plastic particles and treated human trophoblast cells and pregnant mice with PS-NPs at doses near the actual environmental exposure doses of plastic particles in humans. We found that exposure to PS-NPs induced a pregnant mouse miscarriage. PS-NPs suppressed ROCK1-mediated migration/invasion and migrasome formation. SOX2 was identified as the transcription factor of ROCK1. PS-NPs activated autophagy and promoted the autophagy degradation of SOX2, thus suppressing SOX2-mediated ROCK1 transcription. Supplementing with murine SOX2 or ROCK1 could efficiently rescue migration/invasion and migrasome formation and alleviate miscarriage. Analysis of the protein levels of SOX2, ROCK1, TSPAN4, NDST1, P62, and LC-3BII/I in PS-NP-exposed trophoblast cells, villous tissues of unexplained miscarriage patients, and placental tissues of PS-NP-exposed mice gave consistent results. Collectively, this study revealed the reproductive toxicity of nanoplastics and their potential regulatory mechanism, indicating that NP exposure is a risk factor for female reproductive health.


Assuntos
Aborto Espontâneo , Nanopartículas , Poluentes Químicos da Água , Gravidez , Humanos , Feminino , Animais , Camundongos , Microplásticos , Poliestirenos , Placenta , Autofagia , Trofoblastos , Quinases Associadas a rho
6.
Environ Int ; 180: 108237, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37802009

RESUMO

Environmental benzo(a)pyrene (BaP) and its ultimate metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) are universal and inevitable persistent organic pollutants and endocrine disrupting chemicals. Angiogenesis in placental decidua plays a pivotal role in healthy pregnancy. Ferroptosis is a newly identified and iron-dependent cell death mode. However, till now, BaP/BPDE exposure, ferroptosis, defective angiogenesis, and miscarriage have never been correlated; and their regulatory mechanisms have been rarely explored. In this study, we used assays with BPDE-exposed HUVECs (human umbilical vein endothelial cells), decidual tissues and serum samples collected from unexplained recurrent miscarriage and their matched healthy control groups, and placental tissues of BaP-exposed mouse miscarriage model. We found that BaP/BPDE exposure caused ferroptosis and then directly suppressed angiogenesis and eventually induced miscarriage. In mechanism, BaP/BPDE exposure up-regulated free Fe2+ level and promoted lipid peroxidation and also up-regulated MARCHF1 (a novel E3 ligase of GPX4) level to promote the ubiquitination degradation of GPX4, both of which resulted in HUVEC ferroptosis. Furthermore, we also found that GPX4 protein down-regulated the protein levels of VEGFA and ANG-1, two key proteins function for angiogenesis, and thus suppressed HUVEC angiogenesis. In turn, supplement with GPX4 could suppress ferroptosis, recover angiogenesis, and alleviate miscarriage. Moreover, the levels of free Fe2+ and VEGFA in serum might predict the risk of miscarriage. Overall, this study uncovered the crosstalk among BaP/BPDE exposure, ferroptosis, angiogenesis, and miscarriage, discovering novel toxicological effects of BaP/BPDE on human reproductive health. This study also warned the public to avoid exposure to polycyclic aromatic hydrocarbons during pregnancy to effectively prevent adverse pregnancy outcomes.


Assuntos
Aborto Espontâneo , Ferroptose , Camundongos , Animais , Gravidez , Humanos , Feminino , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Benzo(a)pireno , Células Endoteliais/metabolismo , Placenta/metabolismo , Proteínas
7.
Crit Rev Toxicol ; 52(10): 867-880, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36999345

RESUMO

Extracellular vesicles (EVs) derived from parental cells could communicate with neighboring or distant recipient cells. The components in EVs, especially non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, could regulate the functions of the recipient cells. Meanwhile, EVs could also be used as valuable biomarkers and drug delivery carriers. Moreover, environmental toxicants may alter EVs components and regulate EVs-mediated pathogenesis of various diseases. In this review, we mainly summarized the roles of EV-derived non-coding RNAs in the regulation of cell dysfunctions in various adverse pregnancy outcomes, such as preeclampsia (PE), gestational diabetes mellitus (GDM), and miscarriage. Moreover, the effects of environmental toxicants on the components and functions of EVs, as well as on their regulatory roles in these diseases, were also discussed.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Gravidez , Feminino , Humanos , Resultado da Gravidez , Vesículas Extracelulares/fisiologia , MicroRNAs/farmacologia , Biomarcadores , RNA Longo não Codificante/farmacologia
8.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119084, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166715

RESUMO

In our previous study, it showed that P-3F, a podophyllotoxin derivative, causes the increased level of p53 expression by enhancing p53 stability, resulting from blockage of the Mdm2-p53 feedback loop via nucleolus-to-nucleoplasm translocation of Rps27a in human cervical cancer HeLa cell line. However, the mechanism of regulating Rps27a localization remains to be studied. In the current study, it has been demonstrated that the level of protein interacting with carboxyl terminus 1 (PICT1), originally identified as a tumor suppressor, was decreased in a concentration-dependent manner in response to P-3F, leading to inhibition of human cervical cancer cell lines proliferation. Also remarkably, reduction of serine phosphorylation of STMN1 at position 16 induced by P-3F was required in the downregulation of PICT1, in which p53 activity was likely to be directly involved. Note as well that, PICT1 also played an important role in p53 stability enhancement by inhibiting Mdm2-mediated p53 ubiquitination due to Rps27a translocation from the nucleolus to the nucleoplasm to interact with Mdm2 following treatment with P-3F. Collectively, these findings indicated that P-3F, a microtubule polymerization inhibitor, promotes the decreased level of PICT1 expression, which is critical for regulating the Rps27a-Mdm2-p53 pathway against cervical cancer.


Assuntos
Antineoplásicos/farmacologia , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinas/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Podofilotoxina/análogos & derivados , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...